Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Bioinform Adv ; 4(1): vbae036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577542

RESUMO

Motivation: Graph representation learning is a family of related approaches that learn low-dimensional vector representations of nodes and other graph elements called embeddings. Embeddings approximate characteristics of the graph and can be used for a variety of machine-learning tasks such as novel edge prediction. For many biomedical applications, partial knowledge exists about positive edges that represent relationships between pairs of entities, but little to no knowledge is available about negative edges that represent the explicit lack of a relationship between two nodes. For this reason, classification procedures are forced to assume that the vast majority of unlabeled edges are negative. Existing approaches to sampling negative edges for training and evaluating classifiers do so by uniformly sampling pairs of nodes. Results: We show here that this sampling strategy typically leads to sets of positive and negative examples with imbalanced node degree distributions. Using representative heterogeneous biomedical knowledge graph and random walk-based graph machine learning, we show that this strategy substantially impacts classification performance. If users of graph machine-learning models apply the models to prioritize examples that are drawn from approximately the same distribution as the positive examples are, then performance of models as estimated in the validation phase may be artificially inflated. We present a degree-aware node sampling approach that mitigates this effect and is simple to implement. Availability and implementation: Our code and data are publicly available at https://github.com/monarch-initiative/negativeExampleSelection.

2.
Tuberculosis (Edinb) ; 146: 102500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432118

RESUMO

Tuberculosis (TB) is still a major global health challenge, killing over 1.5 million people each year, and hence, there is a need to identify and develop novel treatments for Mycobacterium tuberculosis (M. tuberculosis). The prevalence of infections caused by nontuberculous mycobacteria (NTM) is also increasing and has overtaken TB cases in the United States and much of the developed world. Mycobacterium abscessus (M. abscessus) is one of the most frequently encountered NTM and is difficult to treat. We describe the use of drug-disease association using a semantic knowledge graph approach combined with machine learning models that has enabled the identification of several molecules for testing anti-mycobacterial activity. We established that niclosamide (M. tuberculosis IC90 2.95 µM; M. abscessus IC90 59.1 µM) and tribromsalan (M. tuberculosis IC90 76.92 µM; M. abscessus IC90 147.4 µM) inhibit M. tuberculosis and M. abscessus in vitro. To investigate the mode of action, we determined the transcriptional response of M. tuberculosis and M. abscessus to both compounds in axenic log phase, demonstrating a broad effect on gene expression that differed from known M. tuberculosis inhibitors. Both compounds elicited transcriptional responses indicative of respiratory pathway stress and the dysregulation of fatty acid metabolism.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Salicilanilidas , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Niclosamida/farmacologia , Reposicionamento de Medicamentos , Micobactérias não Tuberculosas/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
3.
Drug Discov Today ; 29(3): 103882, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218214

RESUMO

The Knowledge Management Center (KMC) for the Illuminating the Druggable Genome (IDG) project aims to aggregate, update, and articulate protein-centric data knowledge for the entire human proteome, with emphasis on the understudied proteins from the three IDG protein families. KMC collates and analyzes data from over 70 resources to compile the Target Central Resource Database (TCRD), which is the web-based informatics platform (Pharos). These data include experimental, computational, and text-mined information on protein structures, compound interactions, and disease and phenotype associations. Based on this knowledge, proteins are classified into different Target Development Levels (TDLs) for identification of understudied targets. Additional work by the KMC focuses on enriching target knowledge and producing DrugCentral and other data visualization tools for expanding investigation of understudied targets.


Assuntos
Genoma , Gestão do Conhecimento , Humanos , Proteoma , Bases de Dados Factuais , Informática
4.
Commun Med (Lond) ; 3(1): 98, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460679

RESUMO

BACKGROUND: Birth defects are functional and structural abnormalities that impact about 1 in 33 births in the United States. They have been attributed to genetic and other factors such as drugs, cosmetics, food, and environmental pollutants during pregnancy, but for most birth defects there are no known causes. METHODS: To further characterize associations between small molecule compounds and their potential to induce specific birth abnormalities, we gathered knowledge from multiple sources to construct a reproductive toxicity Knowledge Graph (ReproTox-KG) with a focus on associations between birth defects, drugs, and genes. Specifically, we gathered data from drug/birth-defect associations from co-mentions in published abstracts, gene/birth-defect associations from genetic studies, drug- and preclinical-compound-induced gene expression changes in cell lines, known drug targets, genetic burden scores for human genes, and placental crossing scores for small molecules. RESULTS: Using ReproTox-KG and semi-supervised learning (SSL), we scored >30,000 preclinical small molecules for their potential to cross the placenta and induce birth defects, and identified >500 birth-defect/gene/drug cliques that can be used to explain molecular mechanisms for drug-induced birth defects. The ReproTox-KG can be accessed via a web-based user interface available at https://maayanlab.cloud/reprotox-kg . This site enables users to explore the associations between birth defects, approved and preclinical drugs, and all human genes. CONCLUSIONS: ReproTox-KG provides a resource for exploring knowledge about the molecular mechanisms of birth defects with the potential of predicting the likelihood of genes and preclinical small molecules to induce birth defects.


While birth defects are common, for most birth defects there are no known causes. During pregnancy, developing babies are exposed to drugs, cosmetics, food, and environmental pollutants that may cause birth defects. However, exactly how these environmental factors are involved in producing birth defects is difficult to discern. Also, birth defects can be a consequence of the genes inherited from the parents. We combined general data about human genes and drugs with specific data previously implicating genes and drugs in inducing birth defects to create a knowledge graph representation that connects genes, drugs, and birth defects. This knowledge graph can be used to explore new links that may explain why birth defects occur, particularly those that result from a combination of inherited and environmental influences.

5.
Nucleic Acids Res ; 51(D1): D1405-D1416, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36624666

RESUMO

The Illuminating the Druggable Genome (IDG) project aims to improve our understanding of understudied proteins and our ability to study them in the context of disease biology by perturbing them with small molecules, biologics, or other therapeutic modalities. Two main products from the IDG effort are the Target Central Resource Database (TCRD) (http://juniper.health.unm.edu/tcrd/), which curates and aggregates information, and Pharos (https://pharos.nih.gov/), a web interface for fusers to extract and visualize data from TCRD. Since the 2021 release, TCRD/Pharos has focused on developing visualization and analysis tools that help reveal higher-level patterns in the underlying data. The current iterations of TCRD and Pharos enable users to perform enrichment calculations based on subsets of targets, diseases, or ligands and to create interactive heat maps and UpSet charts of many types of annotations. Using several examples, we show how to address disease biology and drug discovery questions through enrichment calculations and UpSet charts.


Assuntos
Bases de Dados Factuais , Terapia de Alvo Molecular , Proteoma , Humanos , Produtos Biológicos , Descoberta de Drogas , Internet , Proteoma/efeitos dos fármacos
6.
Nucleic Acids Res ; 51(D1): D1276-D1287, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36484092

RESUMO

DrugCentral monitors new drug approvals and standardizes drug information. The current update contains 285 drugs (131 for human use). New additions include: (i) the integration of veterinary drugs (154 for animal use only), (ii) the addition of 66 documented off-label uses and iii) the identification of adverse drug events from pharmacovigilance data for pediatric and geriatric patients. Additional enhancements include chemical substructure searching using SMILES and 'Target Cards' based on UniProt accession codes. Statistics of interests include the following: (i) 60% of the covered drugs are on-market drugs with expired patent and exclusivity coverage, 17% are off-market, and 23% are on-market drugs with active patents and exclusivity coverage; (ii) 59% of the drugs are oral, 33% are parenteral and 18% topical, at the level of the active ingredients; (iii) only 3% of all drugs are for animal use only; however, 61% of the veterinary drugs are also approved for human use; (iv) dogs, cats and horses are by far the most represented target species for veterinary drugs; (v) the physicochemical property profile of animal drugs is very similar to that of human drugs. Use cases include azaperone, the only sedative approved for swine, and ruxolitinib, a Janus kinase inhibitor.


Assuntos
Aprovação de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Drogas Veterinárias , Animais , Humanos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/veterinária , Drogas Veterinárias/administração & dosagem , Drogas Veterinárias/efeitos adversos , Uso Off-Label/veterinária
7.
Commun Biol ; 5(1): 125, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149761

RESUMO

With increased research funding for Alzheimer's disease (AD) and related disorders across the globe, large amounts of data are being generated. Several studies employed machine learning methods to understand the ever-growing omics data to enhance early diagnosis, map complex disease networks, or uncover potential drug targets. We describe results based on a Target Central Resource Database protein knowledge graph and evidence paths transformed into vectors by metapath matching. We extracted features between specific genes and diseases, then trained and optimized our model using XGBoost, termed MPxgb(AD). To determine our MPxgb(AD) prediction performance, we examined the top twenty predicted genes through an experimental screening pipeline. Our analysis identified potential AD risk genes: FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2. FRRS1 and FAM92B are considered dark genes, while CTRAM, SCGB3A1, and TMEFF2 are connected to TREM2-TYROBP, IL-1ß-TNFα, and MTOR-APP AD-risk nodes, suggesting relevance to the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Diagnóstico Precoce , Humanos , Aprendizado de Máquina , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias
8.
BMC Bioinformatics ; 23(1): 37, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35021991

RESUMO

BACKGROUND: LINCS, "Library of Integrated Network-based Cellular Signatures", and IDG, "Illuminating the Druggable Genome", are both NIH projects and consortia that have generated rich datasets for the study of the molecular basis of human health and disease. LINCS L1000 expression signatures provide unbiased systems/omics experimental evidence. IDG provides compiled and curated knowledge for illumination and prioritization of novel drug target hypotheses. Together, these resources can support a powerful new approach to identifying novel drug targets for complex diseases, such as Parkinson's disease (PD), which continues to inflict severe harm on human health, and resist traditional research approaches. RESULTS: Integrating LINCS and IDG, we built the Knowledge Graph Analytics Platform (KGAP) to support an important use case: identification and prioritization of drug target hypotheses for associated diseases. The KGAP approach includes strong semantics interpretable by domain scientists and a robust, high performance implementation of a graph database and related analytical methods. Illustrating the value of our approach, we investigated results from queries relevant to PD. Approved PD drug indications from IDG's resource DrugCentral were used as starting points for evidence paths exploring chemogenomic space via LINCS expression signatures for associated genes, evaluated as target hypotheses by integration with IDG. The KG-analytic scoring function was validated against a gold standard dataset of genes associated with PD as elucidated, published mechanism-of-action drug targets, also from DrugCentral. IDG's resource TIN-X was used to rank and filter KGAP results for novel PD targets, and one, SYNGR3 (Synaptogyrin-3), was manually investigated further as a case study and plausible new drug target for PD. CONCLUSIONS: The synergy of LINCS and IDG, via KG methods, empowers graph analytics methods for the investigation of the molecular basis of complex diseases, and specifically for identification and prioritization of novel drug targets. The KGAP approach enables downstream applications via integration with resources similarly aligned with modern KG methodology. The generality of the approach indicates that KGAP is applicable to many disease areas, in addition to PD, the focus of this paper.


Assuntos
Doença de Parkinson , Biblioteca Gênica , Genoma , Humanos , Iluminação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Reconhecimento Automatizado de Padrão
9.
Curr Protoc ; 2(1): e355, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35085427

RESUMO

The Illuminating the Druggable Genome (IDG) consortium is a National Institutes of Health (NIH) Common Fund program designed to enhance our knowledge of under-studied proteins, more specifically, proteins unannotated within the three most commonly drug-targeted protein families: G-protein coupled receptors, ion channels, and protein kinases. Since 2014, the IDG Knowledge Management Center (IDG-KMC) has generated several open-access datasets and resources that jointly serve as a highly translational machine-learning-ready knowledgebase focused on human protein-coding genes and their products. The goal of the IDG-KMC is to develop comprehensive integrated knowledge for the druggable genome to illuminate the uncharacterized or poorly annotated portion of the druggable genome. The tools derived from the IDG-KMC provide either user-friendly visualizations or ways to impute the knowledge about potential targets using machine learning strategies. In the following protocols, we describe how to use each web-based tool to accelerate illumination in under-studied proteins. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Interacting with the Pharos user interface Basic Protocol 2: Accessing the data in Harmonizome Basic Protocol 3: The ARCHS4 resource Basic Protocol 4: Making predictions about gene function with PrismExp Basic Protocol 5: Using Geneshot to illuminate knowledge about under-studied targets Basic Protocol 6: Exploring under-studied targets with TIN-X Basic Protocol 7: Interacting with the DrugCentral user interface Basic Protocol 8: Estimating Anti-SARS-CoV-2 activities with DrugCentral REDIAL-2020 Basic Protocol 9: Drug Set Enrichment Analysis using Drugmonizome Basic Protocol 10: The Drugmonizome-ML Appyter Basic Protocol 11: The Harmonizome-ML Appyter Basic Protocol 12: GWAS target illumination with TIGA Basic Protocol 13: Prioritizing kinases for lists of proteins and phosphoproteins with KEA3 Basic Protocol 14: Converting PubMed searches to drug sets with the DrugShot Appyter.


Assuntos
Bases de Dados Genéticas , Genoma , COVID-19 , Humanos , Aprendizado de Máquina , Proteínas , SARS-CoV-2
10.
Bioinformatics ; 37(21): 3865-3873, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34086846

RESUMO

MOTIVATION: Genome-wide association studies can reveal important genotype-phenotype associations; however, data quality and interpretability issues must be addressed. For drug discovery scientists seeking to prioritize targets based on the available evidence, these issues go beyond the single study. RESULTS: Here, we describe rational ranking, filtering and interpretation of inferred gene-trait associations and data aggregation across studies by leveraging existing curation and harmonization efforts. Each gene-trait association is evaluated for confidence, with scores derived solely from aggregated statistics, linking a protein-coding gene and phenotype. We propose a method for assessing confidence in gene-trait associations from evidence aggregated across studies, including a bibliometric assessment of scientific consensus based on the iCite relative citation ratio, and meanRank scores, to aggregate multivariate evidence.This method, intended for drug target hypothesis generation, scoring and ranking, has been implemented as an analytical pipeline, available as open source, with public datasets of results, and a web application designed for usability by drug discovery scientists. AVAILABILITY AND IMPLEMENTATION: Web application, datasets and source code via https://unmtid-shinyapps.net/tiga/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Iluminação , Genótipo , Polimorfismo de Nucleotídeo Único , Fenótipo
11.
Scientometrics ; 126(5): 4491-4509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746309

RESUMO

COVID-19 cases have surpassed the 109 + million markers, with deaths tallying up to 2.4 million. Tens of thousands of papers regarding COVID-19 have been published along with countless bibliometric analyses done on COVID-19 literature. Despite this, none of the analyses have focused on domain entities occurring in scientific publications. However, analysis of these bio-entities and the relations among them, a strategy called entity metrics, could offer more insights into knowledge usage and diffusion in specific cases. Thus, this paper presents an entitymetric analysis on COVID-19 literature. We construct an entity-entity co-occurrence network and employ network indicators to analyze the extracted entities. We find that ACE-2 and C-reactive protein are two very important genes and that lopinavir and ritonavir are two very important chemicals, regardless of the results from either ranking.

12.
Nucleic Acids Res ; 49(D1): D1160-D1169, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33151287

RESUMO

DrugCentral is a public resource (http://drugcentral.org) that serves the scientific community by providing up-to-date drug information, as described in previous papers. The current release includes 109 newly approved (October 2018 through March 2020) active pharmaceutical ingredients in the US, Europe, Japan and other countries; and two molecular entities (e.g. mefuparib) of interest for COVID19. New additions include a set of pharmacokinetic properties for ∼1000 drugs, and a sex-based separation of side effects, processed from FAERS (FDA Adverse Event Reporting System); as well as a drug repositioning prioritization scheme based on the market availability and intellectual property rights forFDA approved drugs. In the context of the COVID19 pandemic, we also incorporated REDIAL-2020, a machine learning platform that estimates anti-SARS-CoV-2 activities, as well as the 'drugs in news' feature offers a brief enumeration of the most interesting drugs at the present moment. The full database dump and data files are available for download from the DrugCentral web portal.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , Aprovação de Drogas/estatística & dados numéricos , Descoberta de Drogas/estatística & dados numéricos , Reposicionamento de Medicamentos/estatística & dados numéricos , SARS-CoV-2/efeitos dos fármacos , Antivirais/efeitos adversos , Antivirais/farmacocinética , COVID-19/epidemiologia , COVID-19/virologia , Aprovação de Drogas/métodos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Epidemias , Europa (Continente) , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Japão , SARS-CoV-2/fisiologia , Estados Unidos
13.
Nucleic Acids Res ; 49(D1): D1334-D1346, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33156327

RESUMO

In 2014, the National Institutes of Health (NIH) initiated the Illuminating the Druggable Genome (IDG) program to identify and improve our understanding of poorly characterized proteins that can potentially be modulated using small molecules or biologics. Two resources produced from these efforts are: The Target Central Resource Database (TCRD) (http://juniper.health.unm.edu/tcrd/) and Pharos (https://pharos.nih.gov/), a web interface to browse the TCRD. The ultimate goal of these resources is to highlight and facilitate research into currently understudied proteins, by aggregating a multitude of data sources, and ranking targets based on the amount of data available, and presenting data in machine learning ready format. Since the 2017 release, both TCRD and Pharos have produced two major releases, which have incorporated or expanded an additional 25 data sources. Recently incorporated data types include human and viral-human protein-protein interactions, protein-disease and protein-phenotype associations, and drug-induced gene signatures, among others. These aggregated data have enabled us to generate new visualizations and content sections in Pharos, in order to empower users to find new areas of study in the druggable genome.


Assuntos
Bases de Dados Factuais , Genoma Humano , Doenças Neurodegenerativas/genética , Proteômica/métodos , Software , Viroses/genética , Animais , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Antivirais/química , Antivirais/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Mineração de Dados/estatística & dados numéricos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Internet , Aprendizado de Máquina/estatística & dados numéricos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Doenças Neurodegenerativas/classificação , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/virologia , Mapeamento de Interação de Proteínas , Proteoma/agonistas , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Viroses/classificação , Viroses/tratamento farmacológico , Viroses/virologia
14.
ChemRxiv ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-33200119

RESUMO

Strategies for drug discovery and repositioning are an urgent need with respect to COVID-19. We developed "REDIAL-2020", a suite of machine learning models for estimating small molecule activity from molecular structure, for a range of SARS-CoV-2 related assays. Each classifier is based on three distinct types of descriptors (fingerprint, physicochemical, and pharmacophore) for parallel model development. These models were trained using high throughput screening data from the NCATS COVID19 portal (https://opendata.ncats.nih.gov/covid19/index.html), with multiple categorical machine learning algorithms. The "best models" are combined in an ensemble consensus predictor that outperforms single models where external validation is available. This suite of machine learning models is available through the DrugCentral web portal (http://drugcentral.org/Redial). Acceptable input formats are: drug name, PubChem CID, or SMILES; the output is an estimate of anti-SARS-CoV-2 activities. The web application reports estimated activity across three areas (viral entry, viral replication, and live virus infectivity) spanning six independent models, followed by a similarity search that displays the most similar molecules to the query among experimentally determined data. The ML models have 60% to 74% external predictivity, based on three separate datasets. Complementing the NCATS COVID19 portal, REDIAL-2020 can serve as a rapid online tool for identifying active molecules for COVID-19 treatment. The source code and specific models are available through Github (https://github.com/sirimullalab/redial-2020), or via Docker Hub (https://hub.docker.com/r/sirimullalab/redial-2020) for users preferring a containerized version.

15.
Curr Protoc Bioinformatics ; 69(1): e92, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31898878

RESUMO

Pharos is an integrated web-based informatics platform for the analysis of data aggregated by the Illuminating the Druggable Genome (IDG) Knowledge Management Center, an NIH Common Fund initiative. The current version of Pharos (as of October 2019) spans 20,244 proteins in the human proteome, 19,880 disease and phenotype associations, and 226,829 ChEMBL compounds. This resource not only collates and analyzes data from over 60 high-quality resources to generate these types, but also uses text indexing to find less apparent connections between targets, and has recently begun to collaborate with institutions that generate data and resources. Proteins are ranked according to a knowledge-based classification system, which can help researchers to identify less studied "dark" targets that could be potentially further illuminated. This is an important process for both drug discovery and target validation, as more knowledge can accelerate target identification, and previously understudied proteins can serve as novel targets in drug discovery. Two basic protocols illustrate the levels of detail available for targets and several methods of finding targets of interest. An Alternate Protocol illustrates the difference in available knowledge between less and more studied targets. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Search for a target and view details Alternate Protocol: Search for dark target and view details Basic Protocol 2: Filter a target list to get refined results.


Assuntos
Descoberta de Drogas , Genoma , Software , Neoplasias da Mama/genética , Sistemas de Liberação de Medicamentos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
16.
Nucleic Acids Res ; 47(D1): D963-D970, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371892

RESUMO

DrugCentral is a drug information resource (http://drugcentral.org) open to the public since 2016 and previously described in the 2017 Nucleic Acids Research Database issue. Since the 2016 release, 103 new approved drugs were updated. The following new data sources have been included: Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), FDA Orange Book information, L1000 gene perturbation profile distance/similarity matrices and estimated protonation constants. New and existing entries have been updated with the latest information from scientific literature, drug labels and external databases. The web interface has been updated to display and query new data. The full database dump and data files are available for download from the DrugCentral website.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Aprovação de Drogas/estatística & dados numéricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Expressão Gênica/efeitos dos fármacos , Preparações Farmacêuticas/classificação , Proteínas/classificação
18.
Nat Rev Drug Discov ; 17(5): 317-332, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29472638

RESUMO

A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.

19.
J Biomed Semantics ; 8(1): 50, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122012

RESUMO

BACKGROUND: One of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target. However, only a small subset of potentially druggable targets has attracted significant research and development resources. The Illuminating the Druggable Genome (IDG) project develops resources to catalyze the development of likely targetable, yet currently understudied prospective drug targets. A central component of the IDG program is a comprehensive knowledge resource of the druggable genome. RESULTS: As part of that effort, we have developed a framework to integrate, navigate, and analyze drug discovery data based on formalized and standardized classifications and annotations of druggable protein targets, the Drug Target Ontology (DTO). DTO was constructed by extensive curation and consolidation of various resources. DTO classifies the four major drug target protein families, GPCRs, kinases, ion channels and nuclear receptors, based on phylogenecity, function, target development level, disease association, tissue expression, chemical ligand and substrate characteristics, and target-family specific characteristics. The formal ontology was built using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships. CONCLUSIONS: DTO was built based on the need for a formal semantic model for druggable targets including various related information such as protein, gene, protein domain, protein structure, binding site, small molecule drug, mechanism of action, protein tissue localization, disease association, and many other types of information. DTO will further facilitate the otherwise challenging integration and formal linking to biological assays, phenotypes, disease models, drug poly-pharmacology, binding kinetics and many other processes, functions and qualities that are at the core of drug discovery. The first version of DTO is publically available via the website http://drugtargetontology.org/ , Github ( http://github.com/DrugTargetOntology/DTO ), and the NCBO Bioportal ( http://bioportal.bioontology.org/ontologies/DTO ). The long-term goal of DTO is to provide such an integrative framework and to populate the ontology with this information as a community resource.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Humanos , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo , Semântica , Software
20.
J Am Med Inform Assoc ; 24(6): 1169-1172, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016968

RESUMO

Therapeutic intent, the reason behind the choice of a therapy and the context in which a given approach should be used, is an important aspect of medical practice. There are unmet needs with respect to current electronic mapping of drug indications. For example, the active ingredient sildenafil has 2 distinct indications, which differ solely on dosage strength. In progressing toward a practice of precision medicine, there is a need to capture and structure therapeutic intent for computational reuse, thus enabling more sophisticated decision-support tools and a possible mechanism for computer-aided drug repurposing. The indications for drugs, such as those expressed in the Structured Product Labels approved by the US Food and Drug Administration, appears to be a tractable area for developing an application ontology of therapeutic intent.


Assuntos
Rotulagem de Medicamentos , Tratamento Farmacológico , Vocabulário Controlado , Reposicionamento de Medicamentos , Humanos , Medicina de Precisão , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA